

Why study flavor physics?

- ✦ Flavor sector sensitive to physics at very high scales
 - New particles typically appear in loop-level processes such as neutral kaon mixing:

♦ ⇒ WE MAY SEE EVIDENCE FOR NEW PHYSICS IN THE FLAVOR SECTOR BEFORE WE PRODUCE NON-STANDARD MODEL PARTICLES DIRECTLY AT THE LHC!

Lattice QCD and precision flavor physics

★ Experiments pouring out data to pin down the CKM matrix elements, but precise lattice QCV calculations of hadronic weak matrix elements are needed to interpret many of their results

- ❖ Schematically, EXPT. = PT × CKM × LATTICE
- ◆ To accurately describe weak interactions involving quarks, must include effects of confining quarks into hadrons:

◆ Absorb nonperturbative QCD effects into quantities such as decay constants, form factors, and bag-parameters which we must compute in lattice QCD

$$\begin{pmatrix} \mathbf{V_{ud}} & \mathbf{V_{us}} & \mathbf{V_{ub}} \\ \pi \to \ell \nu & K \to \ell \nu & B \to \ell \nu \\ K \to \pi \ell \nu & B \to \pi \ell \nu \end{pmatrix}$$

$$\mathbf{V_{cd}} & \mathbf{V_{cs}} & \mathbf{V_{cb}}$$

$$D \to \ell \nu & D_s \to \ell \nu & B \to D \ell \nu \\ D \to \pi \ell \nu & D \to K \ell \nu & B \to D^* \ell \nu \end{pmatrix}$$

$$\mathbf{V_{td}} & \mathbf{V_{ts}} & \mathbf{V_{tb}}$$

$$\langle B_d | \bar{B_d} \rangle & \langle B_s | \bar{B_s} \rangle$$

- ◆ "Gold-plated" lattice processes allow the determination of most CKM matrix elements:
 - 1 hadron in initial state;0 or 1 hadron in final state
 - Stable (or narrow and far from decay threshold)

$$\left(egin{array}{cccc} \mathbf{V_{ud}} & \mathbf{V_{us}} & \mathbf{V_{ub}} \ \pi
ightarrow \ell
u & K
ightarrow \ell
u & B
ightarrow \ell
u & K
ightarrow \pi \ell
u & B
ightarrow \pi \ell
u & V_{\mathbf{cb}}
onumber \\ \mathbf{V_{cd}} & \mathbf{V_{cs}} & \mathbf{V_{cb}}
onumber \\ D
ightarrow \ell
u & D_s
ightarrow \ell
u & B
ightarrow D \ell
u \\ D
ightarrow \pi \ell
u & D
ightarrow K \ell
u & B
ightarrow D^* \ell
u \\ \mathbf{V_{td}} & \mathbf{V_{ts}} & \mathbf{V_{tb}}
onumber \\ \langle B_d | B_d \rangle & \langle B_s | B_s \rangle \end{array}
ight)$$

- "Gold-plated" lattice processes allow the determination of most CKM matrix elements:
 - 1 hadron in initial state;0 or 1 hadron in final state
 - Stable (or narrow and far from decay threshold)

$$\begin{pmatrix} \mathbf{V_{ud}} & \mathbf{V_{us}} & \mathbf{V_{ub}} \\ \pi \to \ell \nu & K \to \ell \nu & B \to \ell \nu \\ K \to \pi \ell \nu & B \to \pi \ell \nu \end{pmatrix}$$

$$\mathbf{V_{cd}} & \mathbf{V_{cs}} & \mathbf{V_{cb}}$$

$$D \to \ell \nu & D_s \to \ell \nu & B \to D \ell \nu \\ D \to \pi \ell \nu & D \to K \ell \nu & B \to D^* \ell \nu \end{pmatrix}$$

$$\mathbf{V_{td}} & \mathbf{V_{ts}} & \mathbf{V_{tb}}$$

$$\langle B_d | \bar{B_d} \rangle & \langle B_s | \bar{B_s} \rangle$$

◆ BNL high-energy theory group currently working on quantities circled in PINK

- ◆ "Gold-plated" lattice processes allow the determination of most CKM matrix elements:
 - 1 hadron in initial state;0 or 1 hadron in final state
 - Stable (or narrow and far from decay threshold)

- ◆ BNL high-energy theory group currently working on quantities circled in PINK
- ◆ Colleagues in RBC Collaboration are working on those circled in PURPLE

- ◆ "Gold-plated" lattice processes allow the determination of most CKM matrix elements:
 - 1 hadron in initial state;0 or 1 hadron in final state
 - Stable (or narrow and far from decay threshold)

- ◆ BNL high-energy theory group currently working on quantities circled in PINK
- ◆ Colleagues in RBC Collaboration are working on those circled in PURPLE
- ◆ As part of the MILC Collaboration Van de Water is helping with those circled in ORANGE

Lattice QCD inputs to the unitarity triangle

- Many constraints on the unitarity triangle require lattice QCD calculations of hadronic weak matrix elements
- ♦ BNL high-energy theory group is currently computing several key inputs:

Project menu

- ◆ Two collaborations with members in the BNL HET group are computing kaon physics quantities with different lattice formulations
 - * IZUBUCHI AND SONI with the RBC/UKQCD Collaboration
 - VAN DE WATER with J. Laiho at Glasgow
- Independent results provide valuable cross-checks on phenomenologically-important quantities such as:
 - u,d,s-quark masses: parametric inputs to Standard Model calculations and new physics predictions
 - f_K/f_{π} : allows precise determination of the ratio $|V_{ud}|/|V_{us}|$ [Marciano]
 - ♦ $K \rightarrow \pi \ell \nu$ form factor: needed to obtain $|V_{us}|$ (RBC/UKQCD only)
 - **B**_K: needed to interpret experimental measurement of indirect CP-violation in the neutral kaon system (ϵ_K) as a constraint on the apex of the CKM unitarity triangle
 - \star K→ππ decay: needed to interpret experimental measurement of direct CP-violation in the kaon system (ε'_K/ε_K) as a constraint on the CKM unitarity triangle

HIGHLIGHT: neutral kaon mixing parameter BK

- \bullet Until recently, the uncertainty in the ε_K band was primarily due to the ~20% error in lattice QCD calculations of the hadronic matrix element B_K
- \bullet 2007: RBC/UKQCD used domain-wall fermions to dramatically reduce error to \sim 6%
 - Improved precision largely due to approximate chiral symmetry of domain-wall fermions, which leads to continuum-like chiral extrapolations, straightforward nonperturbative renormalization, and small scaling violations
- 2009: Aubin, Laiho, & RV independently confirmed the RBC/UKQCD result using a different lattice formulation
- ◆ Since 2007: RBC/UKQCV developed a significantly better renormalization scheme; at Lattice 2011 they presented an updated result with a ~3% error
 - ♦ RV & Laiho also presented an updated B_K with similar errors

K→ππ decay

- ♦ Both RBC/UKQCD and Laiho & RV are independently calculating direct CP-violation in K→ππ decay
- \star ε'_K/ε_K places a constraint on the CKM unitarity triangle (a horizontal band) that must intersect the solution established from ε_K + B-physics
 - Sensitive to new physics because it receives contributions from 1-loop electroweak penguin diagrams

- $\bullet \Rightarrow$ Compelling test of the Standard Model CKM framework and probe of new physics
- + Flagship project of RBC/UKQCD
 - Chiral symmetry of domain-wall fermions important to control systematics associated with operator renormalization and subtraction of power divergences

RBC/UKQCD progress on K→ππ decay

- ♦ **BEFORE 2008:** several attempts to compute $ε'_{K}/ε_{K}$ using chiral perturbation theory to relate simpler unphysical matrix elements to desired K → ππ amplitude [Bernard, Draper, Soni, Politzer, & Wise (LO); Laiho & Soni (NLO)]
- ◆ 2008: demonstrated poor convergence of chiral perturbation theory at kaon mass [PoS(LATTICE 2008)272], so switched to direct Lellouch-Lüscher approach
- ♦ **2010:** generated a dedicated ~ $(6 \text{ fm})^3$ coarse ensemble and computed $\Delta I = 3/2 \text{ matrix}$ elements with nearly physical pion/kaon masses [PoS(LATTICE2010)313]; update at Lattice 2011 presented Re(A₂) & Im(A₂) with ~15% errors [Goode, Lattice 2011]
- ♦ **2011:** studied $\Delta I = 1/2$ matrix elements with heavy pion at unphysical kinematics; demonstrated ability to perform power-divergent subtractions and tackle computationally-expensive disconnected diagrams [arXiv:1106.2714]; update at Lattice 2011 presented preliminary results for Re(A₀) & Im(A₀) with 330 MeV pions [Liu, Lattice 2011]
- ♦ Developed improved nonperturbative renormalization scheme for $\Delta S = 1$ operators [Lehner (RBRC) and Sturm, Lattice 2011]
- + 2012+: QCPCQ installation will allow computation with larger volumes and lighter pions, enabling first realistic lattice QCP calculation of ε κ / ε κ

RBC/UKQCD heavy-light physics program

- ◆ Until recently, only two lattice collaborations have been calculating B-meson hadronic weak matrix elements needed for CKM matrix element determinations and unitarity triangle fits using three dynamical quark flavors
 - Both groups use the same staggered gauge configurations generated by the MILC collaboration, so their results are not wholly independent
- We have therefore established a new heavy-light meson physics program using domain-wall light quarks
 - Use relativistic heavy-quark action for the b and c quarks
 - Will provide an essential crosscheck of phenomenologically-important quantities

Current projects

- f_B and f_{Bs} [with O. Witzel]: needed to search for charged Higgs in $B \rightarrow \tau \nu$ decay
 - Needed to implement alternate method to constrain the CKM unitarity triangle that does not require inputs from semileptonic B-decays

- ◆ neutral B-mixing matrix elements [with O. Witzel]: needed to interpret measurements of the B_d and B_s oscillation frequencies as constraints on the CKM unitarity triangle
- \bullet B $\to \pi \ell \nu$ form factor [with Tokyo U. visiting student T. Kawanai]: needed to obtain $|V_{ub}|$
 - Currently $\sim 2\sigma$ discrepancy between inclusive & exclusive determinations

First results

- ♦ We tune the parameters of the lattice b-quark action by requiring that we reproduce the correct experimental values of the B_s meson mass and hyperfine splitting (m_{Bs*}-m_{Bs})
- Can then make predictions for other states involving b-quarks
- Find agreement with experiment for the masses of the Υ , η_b , χ_{b1} , and χ_{b2} , as well as their mass-splittings
- ✦ Heavy-quark discretization errors large in bottomonium, but expect only few-percent errors in B_(s) meson decay constants and mixing parameters due to smaller b-quark momentum in B_(s) meson

 Provides check of the relativistic heavy quark framework and parameter tuning methodology

Future plans

- ◆ f_D and f_{Ds} [PhD. thesis project of Columbia U. student H. Peng]: comparison with experiment (assuming CKM unitarity to obtain |V_{cd}| and |V_{cs}|) provides a good test of lattice methods
 - Because we use the same relativistic action for c-quarks and b-quarks agreement with experiment will validate our method and bolster confidence in future calculations of f_{B(s)} and other B-meson matrix elements
- ♦ Would also like to extend our program to include:
 - b,c-quark masses
 - **B** \rightarrow **D*** ℓv form factor: needed to obtain $|V_{cb}|$
 - $|V_{cb}|$ currently the limiting uncertainty in the unitarity triangle constraint from ϵ_K
 - ♦ $|V_{cb}|$ also the limiting uncertainty in Standard Model calculations of K→πνν-bar branching fractions needed to search for new physics with future experiments at CERN SPS, J-Parc, Fermilab's "Project X"

Lattice averages

[Van de Water with J. Laiho and E. Lunghi]

- Give the current precision of theoretical calculations and experimental flavor-physics
 measurements, choice of lattice QCD inputs has a large impact on the global unitarity
 Triangle fit
- ◆ At least two realistic lattice QCD calculations that include the effects of the dynamical u, d, and s quarks now available for all standard UT fit inputs
 - \Rightarrow Best values for use in CKM unitarity triangle fits and flavor physics phenomenology can be obtained by taking an average
- ◆ Lattice averaging should be done by experts, much like the Heavy Flavor Averaging Group
 - Only include N_f = 2+1 flavor results in averages that are documented on the arXiv in proceedings or publications with complete systematic error budgets
 - Whenever a source of error is at all correlated between two lattice calculations (e.g. use the same gauge configurations, same theoretical tools, or experimental inputs), we assume that the degree-of-correlation is 100%

www.latticeaverages.org

 Regularly update averages published in Phys.Rev. D81 (2010) 034503 with new results and make them available on the web

★ Results are being used and cited; currently working with editors of B-factories Legacy Book to provide averages to be used by CKMfitter, UTFit, and ScanMeth
18

Hint of new physics in the flavor sector?

 Improved lattice QCD calculations of kaon and B-meson mixing matrix elements have shrunk substantially the allowed region of parameter space in the ρ-η plane and revealed a tension in the CKM unitarity triangle [Lunghi & Soni, Phys.Lett. B666 (2008) 162-165]

♦ Tension has grown in significance [Laiho, Lunghi, RV, arXiv:1102.3917] and persists even when one omits the more problematic inputs $|V_{ub}|$ and $|V_{cb}|$

Model-independent interpretation

[Lunghi and Soni, PLB B697 (2011) 323-328]

- lacktriangle Compare likelihood of scenarios of new physics in kaon-mixing, B-mixing, B $\to \tau \nu$
 - Omit |V_{ub}| from B-semileptonic decays

* For B→τν constraint use lattice inputs $\{\xi \equiv f_{B_s} \sqrt{B_{B_s}}/f_{B_d} \sqrt{B_{B_d}}, f_{B_s} \sqrt{B_{B_s}}, B_{B_d}\}$; can then compare predicted f_B with lattice results as check internal consistency of new physics hypothesis

- Goodness-of-fit best when new physics is in phase of B-mixing

 (and hence affects S_{ΨKs})
- ◆ Predicted value of f_B agrees well with lattice determinations for this hypothesis

♦ With greater precision, future lattice calculations of weak matrix elements (when combined with experiment) can be a powerful diagnostic tool to reveal the underlying nature of new physics

Summary and outlook

- ◆ Observations are largely consistent with the Standard Model CKM framework, but there are some indications of a non-Standard Model source of CP violation
 - * Improved precision in lattice QCD calculations of weak matrix elements such as B_K and B-mixing ratio ξ crucial for this observation
- ♦ BNL high-energy theory is attacking several of the most important weak-matrix elements for CKM phenomenology
 - * Kaon physics program has led to the current best published calculations of the $K \rightarrow \pi \ell \nu$ form factor and neutral-kaon mixing parameter B_K
 - Now turning attention to the more challenging target of $K \rightarrow \pi\pi$ decay
 - Developing a B- and D-meson physics program using domain-wall light quarks and will post 1st paper this summer
- ◆ BNL HET has expertise in both lattice gauge theory and flavor phenomenology, and is poised to play a key role in discovering new physics in the flavor sector!